1,230 research outputs found

    Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn

    Full text link
    While lightning activity in Venus is still controversial, its existence in Jupiter and Saturn was first detected by the Voyager missions and later on confirmed by Cassini and New Horizons optical recordings in the case of Jupiter, and recently by Cassini on Saturn in 2009. Based on a recently developed 3D model we investigate the influence of lightning-emitted electromagnetic pulses (EMP) on the upper atmosphere of Venus, Saturn and Jupiter. We explore how different lightning properties such as total energy released and orientation (vertical, horizontal, oblique) can produce mesospheric transient optical emissions of different shapes, sizes and intensities. Moreover, we show that the relatively strong background magnetic field of Saturn can enhance the lightning-induced quasi-electrostatic and inductive electric field components above 1000 km of altitude producing stronger transient optical emissions that could be detected from orbital probes

    GRBs with optical afterglow and known redshift: a statistical study

    Full text link
    We present a correlation between two intrinsic parameters of GRB optical afterglows. These are the isotropic luminosity at the maximum of the light curve (Lpeak) and the time-integrated isotropic energy (Eiso) radiated after the observed maximum. We test the correlation between the logarithms of (Eiso) and (Lpeak) and finally we value the effect of the different samples of GRBs in according with the first optical observation reduced to proper time.Comment: To be published in the proceedings of the conference "SWIFT and GRBs: Unveiling the Relativistic Universe", Venice, June 5-9, 200

    D-Brane Interactions in a Gravitational Shock Wave Background

    Full text link
    We study D-branes in the background of a gravitational shock wave. We consider the case of parallel D-branes located on opposite sides with respect to the shock wave. Their interaction is studied by evaluating the cylinder diagram using the boundary states technique. Boundary states are defined at each D-brane and their scalar product is evaluated after propagation through the shock wave. Taking the limit where the gravitational shock wave vanishes we show that the amplitude evaluated is consistent with the flat space-time result.Comment: To be published in Modern Physics Letters A, revised version with references added, 12 page

    Wake Modeling with the Actuator Disc Concept

    Get PDF
    Abstract The wakes induced by the wind turbines are modeled with the finite-volume code WindSim, based on the solving of the Reynolds Averaged Navier-Stokes (RANS) equations of an Atmospheric Boundary Layer. The RANS equations of an uncompressible flow are solved with a multigrid coupled solver (MIGAL); turbulence is closed with the RNG k-ɛ model. The rotor of a wind turbine is modeled by an actuator disc providing a resistive force which is calculated from the thrust coefficient curve of wind turbine. The axial thrust can be distributed over the swept area in three different manners: by a uniform, parabolic or a polynomial distribution.A wake is therefore generated downstream of each turbine with wake deficit and induced turbulence.When using the actuator disc technique it is also interesting to observe how the wake-wake, wake-terrain interactions are predicted; moreover, also simulations with actuator discs and flows with thermal effects can be carried out.In this work we present first a series of simulations over a single turbine for a grid sensitivity study, in the second part a validation against production data from the offshore wind farm Horns Rev is presented

    The Visible and Near Infrared module of EChO

    Full text link
    The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4-2.5 micron spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectrometer makes use of a HgCdTe detector of 512 by 512 pixels, 18 micron pitch and working at a temperature of 45K as the entire VNIR optical bench. The instrument has been interfaced to the telescope optics by two optical fibers, one per channel, to assure an easier coupling and an easier colocation of the instrument inside the EChO optical bench.Comment: 26 page

    PG 1613+426: a new sdB pulsator

    Get PDF
    We report the detection of short period oscillations in the hot subdwarf B (sdB) star PG 1613+426 from time-series photometry carried out with the 91-cm Cassegrain telescope of the Catania Astrophysical Observatory. This star, which is brighter than the average of the presently known sdB pulsators, with B = 14.14 mag, has Teff=34400KT_{\rm eff}=34 400 {\rm K} and logg=5.97\log g = 5.97, its position is near the hot end of the sdB instability strip, and it is a pulsator with a well observed peak in the power spectrum at 144.18±0.06s144.18\pm 0.06 \rm s. This star seems to be well suited for high precision measurements, which could detect a possible multi-mode pulsation behaviourComment: 3 pages, 4 figures. to appear on A&
    corecore